Are You OK?主键+聚集索引+辅助索引
# 每张表都一定存在主键吗?
关于这个问题,各位小伙伴们不妨先自己想一想,再往下寻找答案。
首先公布结论:对于 InnoDB 存储引擎来说,每张表都一定有个主键(Primary Key)!
让人非常遗憾的是,网络上至今仍然有非常多的文章是这样的描述:“一张表中必须有聚集索引,但不一定需要主键”。前半句是正确的,后半句是大错特错!
对于 InnoDB 存储引擎来说,表采用的存储方式称为索引组织表(index organizedtable),也即表都是根据主键的顺序来进行组织存放的。如果主键都没有,表怎么存?
那下面这段没定义主键的建表语句是正确的吗?
CREATE TABLE test(
a INT NOT NULL,
b INT NULL,
c INT NOT NULL,
d INT NOT NULL,
UNIQUE KEY(b),
UNIQUE KEY(d),
UNIQUE KEY(c)
);
当然是没有任何问题的。
因为 不显示定义主键 != 没有主键。
如果在创建表时没有显式地定义主键,InnoDB 存储引擎会按如下方式选择或创建主键:
- 首先判断表中是否有非空的唯一索引(Unique NOT NULL),如果有,则该列即为主键
- 如果不符合上述条件,InnoDB 存储引擎自动创建一个 6 字节大小的指针
_rowid
作为主键
那如果表中有多个非空唯一索引时怎么办呢? InnoDB 存储引擎将选择建表时第一个定义的非空唯一索引为主键。需要注意的是!主键的选择根据的是非空唯一索引定义的顺序,而不是建表时列的顺序。
比如上面那段代码,有 a、b、c、d 四个列,b、c、d 三列上都有唯一索引。不过 b 列不是非空的,所以不可能成为主键了。而 d 列首先被定义为非空的唯一索引,所以 InnoDB 存储引擎将其视为主键。
# B+ 树索引总览
InnoDB 存储引擎支持以下几种常见的索引:
- B+ 树索引
- 全文索引
- 哈希索引
所谓哈希索引也就是得益于哈希算法的快速查找特性,不过哈希索引的致命缺点就是无法范围查询。并且 InnoDB 中哈希索引是自适应的,也就是说 InnoDB 存储引擎会根据表的使用情况自动为表生成哈希索引,不能人为干预是否在一张表中生成哈希索引。
全文索引本文先暂且不做赘述。
再来看 B+ 树索引,B+ 树索引的本质就是 B+ 树在数据库中的实现,它是目前关系型数据库系统中查找最为常用的索引。
关于 B+ 树的数据结构我就不详细说了,B 代表平衡(Balance),而不是二叉(Binary),B+ 树是从最早的平衡二叉树演化而来的,但是 B+ 树不是一个二叉树。
简单介绍下:B+ 树是为磁盘或其他直接存取辅助设备设计的一种平衡查找树。在 B+ 树中,所有记录节点都是按键值的大小顺序存放在同一层的叶子节点上,各叶子节点之间通过双向链表进行连接。
也就是说,B+ 树的叶子节点存储真正的记录,而非叶子节点的存在是为了更快速的找到对应记录所在的叶子节点。如下图是一个高度为 2 的 B+ 树:
另外,需要注意的是,B+ 树索引并不能找到一个给定键值的具体“行”!B+ 树索引能找到的只是被查找数据行所在的“页”。然后数据库通过把页读入到内存,再在内存中进行查找,最后得到要查找的数据。
肯定有些小伙伴会懵逼了,“页” 又是什么东西?
这就得说到 InnoDB 存储引擎的逻辑存储结构。
InnoDB 存储引擎中,所有数据都被逻辑地存放在一个空间中,称之为 表空间(tablespace),也就是说我们常说的表,可以看作是 InnoDB 存储引擎逻辑结构的最高层。表空间又由 段(segment)、区(extent)、页(page) 组成(页有时也称为块 block)。如下图:
页是 InnoDB 磁盘管理的最小单位,在 InnoDB 存储引擎中,默认每个页的大小为 16KB。而页里面存放的东西就是一行一行的记录。
我们接下来要说的 聚集索引(clustered inex)和辅助索引(secondary index)其实都是一种 B+ 树索引。也就是说不管是聚集索引还是辅助索引,其内部都是 B+树,即高度平衡的,叶子节点存放着所有的数据。(需要注意的是,索引是存储引擎负责实现的,因此不是所有的存储引擎都支持聚簇索引)
聚集索引与辅助索引不同之处就是,叶子节点存放的是否是一整行的信息。下文我们会详细解释。
# 主键和聚集索引的关系
先来看聚集索引,上面我们说过,InnoDB 存储引擎表是索引组织表结构,即表中数据都是按照主键顺序进行存放的。而聚集索引就是按照每张表的主键构造一棵 B+ 树,同时叶子节点中存放的即为表中一行一行的数据,所以聚集索引的叶子节点也被称为数据节点。
也就是说,聚集索引能够在 B+ 树索引的叶子节点上直接找到数据。并且由于定义了数据的逻辑顺序,查询优化器能够快速发现到底是哪一段范围的数据页需要扫描。比如用户需要查询一张用户表,查询最后注册的 10 位用户,由于 B+ 树索引的叶子节点是基于双向链表的,所以用户可以快速找到最后一个数据页,并取出 10 条记录。这也就是为什么大部分情况下查询优化器倾向于采用聚集索引了。
可以这么说:在聚集索引中,索引即数据,数据即索引。
另外,由于数据页只能按照一棵 B+ 树进行查找排序,或者说无法同时把数据行存放在两个不同的地方,所以每张表只能拥有一个聚集索引。
讲了这么多,好像还没讲到主键和聚集索引有啥区别。一张表只能有一个主键,并且也只能有一个聚集索引,聚集索引还是按照主键来构建的,那这种种迹象不都表明主键就是聚集索引?
事实上,主键和索引就不是一个层次的东西!
主键是一种约束,这个约束用来强制表的实体完整性,一个表中只能有一个主键约束,并且主键约束中的列值必须是非空且唯一的。
而聚集索引它作为一种索引,其目的不是为了约束啥,而是为了对数据行进行排序以提高查询的效率,换句话说它决定的是数据库的物理存储结构。
⭐ 形象点说,一个没加聚集索引的表,它的数据是一行一行 无序 地存放在磁盘存储器上的。而如果给表添加了聚集索引,那么表在磁盘上的存储结构就由一行一行排列的结构转变成了 树状结构,也就是 B+ 树结构,换句话说,就是整个表就变成了一个索引,也就是上面提到的 “索引即数据,数据即索引”。
而至于 “主键就是索引” 这种观点的由来,是因为:InnoDB 存储引擎中,每张表都一定存在主键(显示或隐式),而聚集索引依赖于主键的建立,所以如果没有强制指定使用非聚集索引,InnoDB 在创建主键的同时会建立一个唯一的聚集索引(也有些文章称之为 主键索引)。
所以,不要说 “主键就是聚集索引”,应该这样说:“聚集索引一般都是加在主键上的”。
# 聚集索引和辅助索引的关系
辅助索引(Secondary Index)也称为 非聚集索引、二级索引。其和聚集索引的最大区别就在于,辅助索引的叶子节点并不包含行记录的全部数据。
简单来说,一行记录我们可以用 “主键 + 其他数据” 这样的组合来标识,聚集索引中的叶子节点存储的就是这一整个组合,而非聚集索引中的叶子节点只存储了这个组合中的主键,那其他数据我怎么获得呢?
非聚集索引的叶子节点说还包含了一个 书签(bookmark),该书签用来告诉 InnoDB 存储引擎哪里可以找到与索引相对应的行数据。
那各位不妨想一想,行数据存储在哪里呢?
没错,上文说过,聚集索引中的叶子节点中存放的就是表中一行一行的数据,所以 InnoDB 存储引擎的辅助索引中的书签其实就是相应行数据的聚集索引键。
也就是说,辅助索引的叶子节点包含的是:每行数据的辅助索引键 + 该行数据对应的聚集索引键。
当通过辅助索引来寻找数据时,InnoDB 存储引擎会先遍历辅助索引的 B+ 树,通过叶子节点获得某个辅助索引键对应的聚集索引键,然后再通过聚集索引来找到一个完整的行记录。
举个例子,如果在一棵高度为 3 的辅助索引树中查找数据,那需要对这棵辅助索引树遍历 3 次找到指定聚集索引键,如果聚集索引树的高度同样为 3,那么还需要对聚集索引树进行 3 次查找,最终找到一个完整的行数据所在的页,因此一共需要 6 次逻辑 IO 访问以得到最终的一个数据页。
另外,很显然的是,辅助索引的存在并不影响数据在聚集索引中的组织,因此每张表上可以有多个辅助索引。